TCP基本认识

TCP头

TCP 头格式

序列号:在建立连接时由计算机生成的随机数作为其初始值,通过 SYN 包传给接收端主机,每发送一次数据,就「累加」一次该「数据字节数」的大小。用来解决网络包乱序问题。

确认应答号:指下一次「期望」收到的数据的序列号,发送端收到这个确认应答以后可以认为在这个序号以前的数据都已经被正常接收。用来解决丢包的问题。

为什么需要TCP协议?TCP工作在哪一层?

IP 层是「不可靠」的,它不保证网络包的交付、不保证网络包的按序交付、也不保证网络包中的数据的完整性。

如果需要保障网络数据包的可靠性,那么就需要由上层(传输层)的 TCP 协议来负责。

因为 TCP 是一个工作在传输层可靠数据传输的服务,它能确保接收端接收的网络包是无损坏、无间隔、非冗余和按序的。

什么是TCP?

TCP 是面向连接的、可靠的、基于字节流的传输层通信协议。

img

  • 面向连接:一定是「一对一」才能连接,不能像 UDP 协议可以一个主机同时向多个主机发送消息,也就是一对多是无法做到的;
  • 可靠的:无论的网络链路中出现了怎样的链路变化,TCP 都可以保证一个报文一定能够到达接收端;
  • 字节流:用户消息通过 TCP 协议传输时,消息可能会被操作系统「分组」成多个的 TCP 报文,如果接收方的程序如果不知道「消息的边界」,是无法读出一个有效的用户消息的。并且 TCP 报文是「有序的」,当「前一个」TCP 报文没有收到的时候,即使它先收到了后面的 TCP 报文,那么也不能扔给应用层去处理,同时对「重复」的 TCP 报文会自动丢弃。

什么是TCP连接?

用于保证可靠性和流量控制维护的某些状态信息,这些信息的组合,包括 Socket、序列号和窗口大小称为连接。

img

  • Socket:由 IP 地址和端口号组成
  • 序列号:用来解决乱序问题等
  • 窗口大小:用来做流量控制

TCP和UDP的区别是?分别的应用场景是?

UDP 不提供复杂的控制机制,利用 IP 提供面向「无连接」的通信服务。

UDP 协议真的非常简单,头部只有 8 个字节(64 位),UDP 的头部格式如下:

UDP 头部格式

  • 包长度:该字段保存了 UDP 首部的长度跟数据的长度之和。
  • 校验和:校验和是为了提供可靠的 UDP 首部和数据而设计,防止收到在网络传输中受损的 UDP 包。

区别

1. 连接

  • TCP 是面向连接的传输层协议,传输数据前先要建立连接。
  • UDP 是不需要连接,即刻传输数据。

2. 服务对象

  • TCP 是一对一的两点服务,即一条连接只有两个端点。
  • UDP 支持一对一、一对多、多对多的交互通信

3. 可靠性

  • TCP 是可靠交付数据的,数据可以无差错、不丢失、不重复、按序到达。
  • UDP 是尽最大努力交付,不保证可靠交付数据。但是我们可以基于 UDP 传输协议实现一个可靠的传输协议,比如 QUIC 协议,具体可以参见这篇文章:如何基于 UDP 协议实现可靠传输?(opens new window)

4. 拥塞控制、流量控制

  • TCP 有拥塞控制和流量控制机制,保证数据传输的安全性。
  • UDP 则没有,即使网络非常拥堵了,也不会影响 UDP 的发送速率。

5. 首部开销

  • TCP 首部长度较长,会有一定的开销,首部在没有使用「选项」字段时是 20 个字节,如果使用了「选项」字段则会变长的。
  • UDP 首部只有 8 个字节,并且是固定不变的,开销较小。

6. 传输方式

  • TCP 是流式传输,没有边界,但保证顺序和可靠。
  • UDP 是一个包一个包的发送,是有边界的,但可能会丢包和乱序。

7. 分片不同

  • TCP 的数据大小如果大于 MSS 大小,则会在传输层进行分片,目标主机收到后,也同样在传输层组装 TCP 数据包,如果中途丢失了一个分片,只需要传输丢失的这个分片。
  • UDP 的数据大小如果大于 MTU 大小,则会在 IP 层进行分片,目标主机收到后,在 IP 层组装完数据,接着再传给传输层。

应用场景

由于 TCP 是面向连接,能保证数据的可靠性交付,因此经常用于:

  • FTP 文件传输;
  • HTTP / HTTPS;

由于 UDP 面向无连接,它可以随时发送数据,再加上 UDP 本身的处理既简单又高效,因此经常用于:

  • 包总量较少的通信,如 DNSSNMP 等;
  • 视频、音频等多媒体通信;
  • 广播通信;

TCP和UDP可以使用同一个端口吗?

答案:可以的

在数据链路层中,通过 MAC 地址来寻找局域网中的主机。在网际层中,通过 IP 地址来寻找网络中互连的主机或路由器。在传输层中,需要通过端口进行寻址,来识别同一计算机中同时通信的不同应用程序。

所以,传输层的「端口号」的作用,是为了区分同一个主机上不同应用程序的数据包。

传输层有两个传输协议分别是 TCP 和 UDP,在内核中是两个完全独立的软件模块。

当主机收到数据包后,可以在 IP 包头的「协议号」字段知道该数据包是 TCP/UDP,所以可以根据这个信息确定送给哪个模块(TCP/UDP)处理,送给 TCP/UDP 模块的报文根据「端口号」确定送给哪个应用程序处理。

img

因此,TCP/UDP 各自的端口号也相互独立,如 TCP 有一个 80 号端口,UDP 也可以有一个 80 号端口,二者并不冲突。

关于端口的知识点,还是挺多可以讲的,比如还可以牵扯到这几个问题:

  • 多个 TCP 服务进程可以同时绑定同一个端口吗?
  • 重启 TCP 服务进程时,为什么会出现“Address in use”的报错信息?又该怎么避免?
  • 客户端的端口可以重复使用吗?
  • 客户端 TCP 连接 TIME_WAIT 状态过多,会导致端口资源耗尽而无法建立新的连接吗?

上面这些问题,可以看这篇文章:TCP 和 UDP 可以使用同一个端口吗?

TCP连接建立

TCP三次握手过程是怎样的?

TCP 三次握手

第三次握手是可以携带数据的,前两次握手是不可以携带数据的

为什么是三次握手?而不是两次/四次?

在前面我们知道了什么是 TCP 连接

  • 用于保证可靠性和流量控制维护的某些状态信息,这些信息的组合,包括 Socket、序列号和窗口大小称为连接。

所以,重要的是为什么三次握手才可以初始化 Socket、序列号和窗口大小并建立 TCP 连接。

接下来,以三个方面分析三次握手的原因:

  • 三次握手才可以阻止重复历史连接的初始化(主要原因)
  • 三次握手才可以同步双方的初始序列号
  • 三次握手才可以避免资源浪费

原因一:避免历史连接

三次握手的首要原因是为了防止旧的重复连接初始化造成混乱。

我们考虑一个场景,客户端先发送了 SYN(seq = 90)报文,然后客户端宕机了,而且这个 SYN 报文还被网络阻塞了,服务端并没有收到,接着客户端重启后,又重新向服务端建立连接,发送了 SYN(seq = 100)报文(注意!不是重传 SYN,重传的 SYN 的序列号是一样的)。

看看三次握手是如何阻止历史连接的:

三次握手避免历史连接

客户端连续发送多次 SYN(都是同一个四元组)建立连接的报文,在网络拥堵情况下:

  • 一个「旧 SYN 报文」比「最新的 SYN」 报文早到达了服务端,那么此时服务端就会回一个 SYN + ACK 报文给客户端,此报文中的确认号是 91(90+1)。
  • 客户端收到后,发现自己期望收到的确认号应该是 100 + 1,而不是 90 + 1,于是就会回 RST 报文。
  • 服务端收到 RST 报文后,就会释放连接。
  • 后续最新的 SYN 抵达了服务端后,客户端与服务端就可以正常的完成三次握手了。

上述中的「旧 SYN 报文」称为历史连接,TCP 使用三次握手建立连接的最主要原因就是防止「历史连接」初始化了连接

如果服务端在收到 RST 报文之前,先收到了「新 SYN 报文」,也就是服务端收到客户端报文的顺序是:「旧 SYN 报文」->「新 SYN 报文」,此时会发生什么?

当服务端第一次收到 SYN 报文,也就是收到 「旧 SYN 报文」时,就会回复 SYN + ACK 报文给客户端,此报文中的确认号是 91(90+1)。

然后这时再收到「新 SYN 报文」时,就会回 Challenge Ack (opens new window)报文给客户端,这个 ack 报文并不是确认收到「新 SYN 报文」的,而是上一次的 ack 确认号,也就是91(90+1)。所以客户端收到此 ACK 报文时,发现自己期望收到的确认号应该是 101,而不是 91,于是就会回 RST 报文。

如果是两次握手连接,就无法阻止历史连接,那为什么 TCP 两次握手为什么无法阻止历史连接呢?

我先直接说结论,主要是因为在两次握手的情况下,服务端没有中间状态给客户端来阻止历史连接,导致服务端可能建立一个历史连接,造成资源浪费

你想想,在两次握手的情况下,服务端在收到 SYN 报文后,就进入 ESTABLISHED 状态,意味着这时可以给对方发送数据,但是客户端此时还没有进入 ESTABLISHED 状态,假设这次是历史连接,客户端判断到此次连接为历史连接,那么就会回 RST 报文来断开连接,而服务端在第一次握手的时候就进入 ESTABLISHED 状态,所以它可以发送数据的,但是它并不知道这个是历史连接,它只有在收到 RST 报文后,才会断开连接。

两次握手无法阻止历史连接

可以看到,如果采用两次握手建立 TCP 连接的场景下,服务端在向客户端发送数据前,并没有阻止掉历史连接,导致服务端建立了一个历史连接,又白白发送了数据,妥妥地浪费了服务端的资源。

因此,要解决这种现象,最好就是在服务端发送数据前,也就是建立连接之前,要阻止掉历史连接,这样就不会造成资源浪费,而要实现这个功能,就需要三次握手

Q:客户端发送三次握手(ack 报文)后就可以发送数据了,而被动方此时还是 syn_received 状态,如果 ack 丢了,那客户端发的数据是不是也白白浪费了?

不是的,即使服务端还是在 syn_received 状态,收到了客户端发送的数据,还是可以建立连接的,并且还可以正常收到这个数据包。这是因为数据报文中是有 ack 标识位,也有确认号,这个确认号就是确认收到了第二次握手。如下图:

img

所以,服务端收到这个数据报文,是可以正常建立连接的,然后就可以正常接收这个数据包了。

原因二:同步双方初始序列号

TCP 协议的通信双方, 都必须维护一个「序列号」, 序列号是可靠传输的一个关键因素,它的作用:

  • 接收方可以去除重复的数据;
  • 接收方可以根据数据包的序列号按序接收;
  • 可以标识发送出去的数据包中, 哪些是已经被对方收到的(通过 ACK 报文中的序列号知道);

可见,序列号在 TCP 连接中占据着非常重要的作用,所以当客户端发送携带「初始序列号」的 SYN 报文的时候,需要服务端回一个 ACK 应答报文,表示客户端的 SYN 报文已被服务端成功接收,那当服务端发送「初始序列号」给客户端的时候,依然也要得到客户端的应答回应,这样一来一回,才能确保双方的初始序列号能被可靠的同步。

四次握手与三次握手

四次握手其实也能够可靠的同步双方的初始化序号,但由于第二步和第三步可以优化成一步,所以就成了「三次握手」。

而两次握手只保证了一方的初始序列号能被对方成功接收,没办法保证双方的初始序列号都能被确认接收。

原因三:避免资源浪费

如果只有「两次握手」,当客户端发生的 SYN 报文在网络中阻塞,客户端没有接收到 ACK 报文,就会重新发送 SYN由于没有第三次握手,服务端不清楚客户端是否收到了自己回复的 ACK 报文,所以服务端每收到一个 SYN 就只能先主动建立一个连接,这会造成什么情况呢?

如果客户端发送的 SYN 报文在网络中阻塞了,重复发送多次 SYN 报文,那么服务端在收到请求后就会建立多个冗余的无效链接,造成不必要的资源浪费。

两次握手会造成资源浪费

即两次握手会造成消息滞留情况下,服务端重复接受无用的连接请求 SYN 报文,而造成重复分配资源。

小结

TCP 建立连接时,通过三次握手能防止历史连接的建立,能减少双方不必要的资源开销,能帮助双方同步初始化序列号。序列号能够保证数据包不重复、不丢弃和按序传输。

不使用「两次握手」和「四次握手」的原因:

  • 「两次握手」:无法防止历史连接的建立,会造成双方资源的浪费,也无法可靠的同步双方序列号;
  • 「四次握手」:三次握手就已经理论上最少可靠连接建立,所以不需要使用更多的通信次数。

为什么每次建立 TCP 连接时,初始化的序列号都要求不一样呢?

主要原因有两个方面:

  • 为了防止历史报文被下一个相同四元组的连接接收(主要方面);
  • 为了安全性,防止黑客伪造的相同序列号的 TCP 报文被对方接收;

接下来,详细说说第一点。

假设每次建立连接,客户端和服务端的初始化序列号都是从 0 开始:

img

过程如下:

  • 客户端和服务端建立一个 TCP 连接,在客户端发送数据包被网络阻塞了,然后超时重传了这个数据包,而此时服务端设备断电重启了,之前与客户端建立的连接就消失了,于是在收到客户端的数据包的时候就会发送 RST 报文。
  • 紧接着,客户端又与服务端建立了与上一个连接相同四元组的连接;
  • 在新连接建立完成后,上一个连接中被网络阻塞的数据包正好抵达了服务端,刚好该数据包的序列号正好是在服务端的接收窗口内,所以该数据包会被服务端正常接收,就会造成数据错乱。

可以看到,如果每次建立连接,客户端和服务端的初始化序列号都是一样的话,很容易出现历史报文被下一个相同四元组的连接接收的问题

如果每次建立连接客户端和服务端的初始化序列号都「不一样」,就有大概率因为历史报文的序列号「不在」对方接收窗口,从而很大程度上避免了历史报文,比如下图:

img

相反,如果每次建立连接客户端和服务端的初始化序列号都「一样」,就有大概率遇到历史报文的序列号刚「好在」对方的接收窗口内,从而导致历史报文被新连接成功接收。

所以,每次初始化序列号不一样很大程度上能够避免历史报文被下一个相同四元组的连接接收,注意是很大程度上,并不是完全避免了(因为序列号会有回绕的问题,所以需要用时间戳的机制来判断历史报文,详细看篇:TCP 是如何避免历史报文的? (opens new window))。

初始序列号 ISN 是如何产生的?

RFC793 提到初始化序列号 ISN 随机生成算法:ISN = M + F(localhost, localport, remotehost, remoteport)。

  • M 是一个计时器,这个计时器每隔 4 微秒加 1。
  • F 是一个 Hash 算法,根据源 IP、目的 IP、源端口、目的端口生成一个随机数值。要保证 Hash 算法不能被外部轻易推算得出,用 MD5 算法是一个比较好的选择。

既然 IP 层会分片,为什么 TCP 层还需要 MSS 呢?

MTU 与 MSS

  • MTU:一个网络包的最大长度,以太网中一般为 1500 字节;
  • MSS:除去 IP 和 TCP 头部之后,一个网络包所能容纳的 TCP 数据的最大长度;

如果在 TCP 的整个报文(头部 + 数据)交给 IP 层进行分片,会有什么异常呢?

当 IP 层有一个超过 MTU 大小的数据(TCP 头部 + TCP 数据)要发送,那么 IP 层就要进行分片,把数据分片成若干片,保证每一个分片都小于 MTU。把一份 IP 数据报进行分片以后,由目标主机的 IP 层来进行重新组装后,再交给上一层 TCP 传输层。

这看起来井然有序,但这存在隐患的,那么当如果一个 IP 分片丢失,整个 IP 报文的所有分片都得重传

因为 IP 层本身没有超时重传机制,它由传输层的 TCP 来负责超时和重传。

当某一个 IP 分片丢失后,接收方的 IP 层就无法组装成一个完整的 TCP 报文(头部 + 数据),也就无法将数据报文送到 TCP 层,所以接收方不会响应 ACK 给发送方,因为发送方迟迟收不到 ACK 确认报文,所以会触发超时重传,就会重发「整个 TCP 报文(头部 + 数据)」。

因此,可以得知由 IP 层进行分片传输,是非常没有效率的。

所以,为了达到最佳的传输效能 TCP 协议在建立连接的时候通常要协商双方的 MSS 值,当 TCP 层发现数据超过 MSS 时,则就先会进行分片,当然由它形成的 IP 包的长度也就不会大于 MTU ,自然也就不用 IP 分片了。

握手阶段协商 MSS

经过 TCP 层分片后,如果一个 TCP 分片丢失后,进行重发时也是以 MSS 为单位,而不用重传所有的分片,大大增加了重传的效率。

SYN报文什么情况下会被丢弃?

我就给出我遇到过 SYN 报文被丢弃的两种场景:

  • 开启 tcp_tw_recycle 参数(linux),并且在 NAT 环境下,造成 SYN 报文被丢弃
  • TCP 两个队列满了(半连接队列和全连接队列),造成 SYN 报文被丢弃

tcp_tw_recycle + NAT

Linux 操作系统提供了两个可以系统参数来快速回收处于 TIME_WAIT 状态的连接,这两个参数都是默认关闭的:

  • net.ipv4.tcp_tw_reuse,如果开启该选项的话,客户端(连接发起方) 在调用 connect() 函数时,如果内核选择到的端口,已经被相同四元组的连接占用的时候,就会判断该连接是否处于 TIME_WAIT 状态,如果该连接处于 TIME_WAIT 状态并且 TIME_WAIT 状态持续的时间超过了 1 秒,那么就会重用这个连接,然后就可以正常使用该端口了。所以该选项只适用于连接发起方。
  • net.ipv4.tcp_tw_recycle,如果开启该选项的话,允许处于 TIME_WAIT 状态的连接被快速回收;

要使得这两个选项生效,有一个前提条件,就是要打开 TCP 时间戳,即 net.ipv4.tcp_timestamps=1(默认即为 1))。

但是tcp_tw_recycle 在使用了 NAT 的网络下是不安全的!

对于服务器来说,如果同时开启了recycle 和 timestamps 选项,则会开启一种称之为「 per-host 的 PAWS 机制」。

什么是 per-host 的 PAWS 机制?


tcp_timestamps 选项开启之后, PAWS 机制会自动开启,它的作用是防止 TCP 包中的序列号发生绕回。

正常来说每个 TCP 包都会有自己唯一的 SEQ,出现 TCP 数据包重传的时候会复用 SEQ 号,这样接收方能通过 SEQ 号来判断数据包的唯一性,也能在重复收到某个数据包的时候判断数据是不是重传的。但是 TCP 这个 SEQ 号是有限的,一共 32 bit,SEQ 开始是递增,溢出之后从 0 开始再次依次递增

所以当 SEQ 号出现溢出后单纯通过 SEQ 号无法标识数据包的唯一性,某个数据包延迟或因重发而延迟时可能导致连接传递的数据被破坏。

PAWS 就是为了避免这个问题而产生的,在开启 tcp_timestamps 选项情况下,一台机器发的所有 TCP 包都会带上发送时的时间戳,PAWS 要求连接双方维护最近一次收到的数据包的时间戳(Recent TSval),每收到一个新数据包都会读取数据包中的时间戳值跟 Recent TSval 值做比较,如果发现收到的数据包中时间戳不是递增的,则表示该数据包是过期的,就会直接丢弃这个数据包


per-host 是对「对端 IP 做 PAWS 检查」,而非对「IP + 端口」四元组做 PAWS 检查。

但是如果客户端网络环境是用了 NAT 网关,那么客户端环境的每一台机器通过 NAT 网关后,都会是相同的 IP 地址,在服务端看来,就好像只是在跟一个客户端打交道一样,无法区分出来。

Per-host PAWS 机制利用TCP option里的 timestamp 字段的增长来判断串扰数据,而 timestamp 是根据客户端各自的 CPU tick 得出的值。

当客户端 A 通过 NAT 网关和服务器建立 TCP 连接,然后服务器主动关闭并且快速回收 TIME-WAIT 状态的连接后,客户端 B 也通过 NAT 网关和服务器建立 TCP 连接,注意客户端 A 和 客户端 B 因为经过相同的 NAT 网关,所以是用相同的 IP 地址与服务端建立 TCP 连接,如果客户端 B 的 timestamp 比 客户端 A 的 timestamp 小,那么由于服务端的 per-host 的 PAWS 机制的作用,服务端就会丢弃客户端主机 B 发来的 SYN 包

因此,tcp_tw_recycle 在使用了 NAT 的网络下是存在问题的,如果它是对 TCP 四元组做 PAWS 检查,而不是对「相同的 IP 做 PAWS 检查」,那么就不会存在这个问题了。

网上很多博客都说开启 tcp_tw_recycle 参数来优化 TCP,我信你个鬼,糟老头坏的很!

tcp_tw_recycle 在 Linux 4.12 版本后,直接取消了这一参数。

队列满了

在 TCP 三次握手的时候,Linux 内核会维护两个队列,分别是:

  • 半连接队列,也称 SYN 队列;
  • 全连接队列,也称 accepet 队列;

服务端收到客户端发起的 SYN 请求后,内核会把该连接存储到半连接队列,并向客户端响应 SYN+ACK,接着客户端会返回 ACK,服务端收到第三次握手的 ACK 后,内核会把连接从半连接队列移除,然后创建新的完全的连接,并将其添加到 accept 队列,等待进程调用 accept 函数时把连接取出来。

当服务器造成syn攻击,就有可能导致 TCP 半连接队列满了,这时后面来的 syn 包都会被丢弃

但是,如果开启了syncookies 功能,即使半连接队列满了,也不会丢弃syn 包

syncookies 是这么做的:服务器根据当前状态计算出一个值,放在己方发出的 SYN+ACK 报文中发出,当客户端返回 ACK 报文时,取出该值验证,如果合法,就认为连接建立成功,如下图所示。

img

syncookies 参数主要有以下三个值:

  • 0 值,表示关闭该功能;
  • 1 值,表示仅当 SYN 半连接队列放不下时,再启用它;
  • 2 值,表示无条件开启功能;

那么在应对 SYN 攻击时,只需要设置为 1 即可

在服务端并发处理大量请求时,如果 TCP accpet 队列过小,或者应用程序调用 accept() 不及时,就会造成 accpet 队列满了 ,这时后续的连接就会被丢弃,这样就会出现服务端请求数量上不去的现象。

img

要解决这个问题,我们可以:

  • 调大 accpet 队列的最大长度,调大的方式是通过调大 backlog 以及 somaxconn 参数。
  • 检查系统或者代码为什么调用 accept() 不及时;

关于 SYN 队列和 accpet 队列,我之前写过一篇很详细的文章:TCP 半连接队列和全连接队列满了会发生什么?又该如何应对?

第一/二/三次握手丢失了,会发生什么?

会超时重传 SYN/SYN-ACK 报文,而且重传的 SYN 报文的序列号都是一样的。不同版本的操作系统可能超时时间不同,有的 1 秒的,也有 3 秒的,这个超时时间是写死在内核里的,如果想要更改则需要重新编译内核,比较麻烦。

通常,第一次超时重传是在 1 秒后,第二次超时重传是在 2 秒,第三次超时重传是在 4 秒后,第四次超时重传是在 8 秒后,第五次是在超时重传 16 秒后。没错,每次超时的时间是上一次的 2 倍

达到最大重传次数后,再等2倍时间,如果还是没能收到服务端的第二次握手(SYN-ACK 报文),那么客户端就会断开连接,服务端同理。

注意,ACK 报文是不会有重传的,当 ACK 丢失了,就由对方重传对应的报文

建立连接后,再收到SYN报文会怎样?

大概意思是,一个已经建立的 TCP 连接,客户端中途宕机了,而服务端此时也没有数据要发送,一直处于 Established 状态,客户端恢复后,向服务端建立连接,此时服务端会怎么处理?

客户端的 SYN 报文里的端口号不同

如果客户端恢复后发送的 SYN 报文中的源端口号跟上一次连接的源端口号不一样,此时服务端会认为是新的连接要建立,于是就会通过三次握手来建立新的连接。

那旧连接里处于 Established 状态的服务端最后会怎么样呢?

如果服务端发送了数据包给客户端,由于客户端的连接已经被关闭了,此时客户的内核就会回 RST 报文,服务端收到后就会释放连接。

如果服务端一直没有发送数据包给客户端,在超过一段时间后,TCP 保活机制就会启动,检测到客户端没有存活后,接着服务端就会释放掉该连接。

客户端的 SYN 报文里的端口号相同

如果客户端恢复后,发送的 SYN 报文中的源端口号跟上一次连接的源端口号一样,也就是处于 Established 状态的服务端收到了这个 SYN 报文。

img

处于 Established 状态的服务端,如果收到了客户端的 SYN 报文(注意此时的 SYN 报文其实是乱序的,因为 SYN 报文的初始化序列号其实是一个随机数),会回复一个携带了正确序列号和确认号的 ACK 报文,这个 ACK 被称之为 Challenge ACK。

接着,客户端收到这个 Challenge ACK,发现确认号(ack num)并不是自己期望收到的,于是就会回 RST 报文,服务端收到后,就会释放掉该连接。

服务端没有 listen,客户端发起连接建立,会发生什么?

做个实验

这个问题,自己做个实验就知道了。

我用下面这个程序作为例子,绑定了 IP 地址 + 端口,而没有调用 listen。

/*******服务器程序  TCPServer.c ************/
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <string.h>
#include <netdb.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <sys/socket.h>

int main(int argc, char *argv[])
{
int sockfd, ret;
struct sockaddr_in server_addr;

/* 服务器端创建 tcp socket 描述符 */
sockfd = socket(AF_INET, SOCK_STREAM, 0);
if(sockfd < 0)
{
fprintf(stderr, "Socket error:%s\n\a", strerror(errno));
exit(1);
}

/* 服务器端填充 sockaddr 结构 */
bzero(&server_addr, sizeof(struct sockaddr_in));
server_addr.sin_family = AF_INET;
server_addr.sin_addr.s_addr = htonl(INADDR_ANY);
server_addr.sin_port = htons(8888);

/* 绑定 ip + 端口 */
ret = bind(sockfd, (struct sockaddr *)(&server_addr), sizeof(struct sockaddr));
if(ret < 0)
{
fprintf(stderr, "Bind error:%s\n\a", strerror(errno));
exit(1);
}

//没有调用 listen

sleep(1000);
close(sockfd);
return 0;
}

然后,我用浏览器访问这个地址:http://121.43.173.240:8888/

图片

报错连接服务器失败。

同时,我也用抓包工具,抓了这个过程。

图片

可以看到,客户端对服务端发起 SYN 报文后,服务端回了 RST 报文。

所以,这个问题就有了答案,服务端如果只 bind 了 IP 地址和端口,而没有调用 listen 的话,然后客户端对服务端发起了连接建立,服务端会回 RST 报文。

没有 listen,可以建立 TCP 连接吗?

是可以的,客户端是可以自己连自己的形成连接(TCP自连接),也可以两个客户端同时向对方发出请求建立连接(TCP同时打开),这两个情况都有个共同点,就是没有服务端参与,也就是没有listen,就能建立连接

内核还有个全局 hash 表,可以用于存放 sock 连接的信息。

在 TCP 自连接的情况中,客户端在 connect 方法时,最后会将自己的连接信息放入到这个全局 hash 表中,然后将信息发出,消息在经过回环地址重新回到 TCP 传输层的时候,就会根据 IP + 端口信息,再一次从这个全局 hash 中取出信息。于是握手包一来一回,最后成功建立连接

TCP 同时打开的情况也类似,只不过从一个客户端变成了两个客户端而已。

没有 accept,能建立TCP连接吗?

一般正常的情况下,如果启动服务器,会发现最后程序会阻塞在accept()里。

这个问题其实只要在执行accept() 之前执行一个 sleep(20),然后立刻执行客户端相关的方法,同时抓个包,就能得出结论。

不执行accept时抓包结果

从抓包结果看来,就算不执行accept()方法,三次握手照常进行,并顺利建立连接。

更骚气的是,在服务端执行accept()前,如果客户端发送消息给服务端,服务端是能够正常回复ack确认包的。

回顾两个队列

半连接队列和全连接队列

  • 半连接队列(SYN队列),服务端收到第一次握手后,会将sock加入到这个队列中,队列内的sock都处于SYN_RECV 状态。
  • 全连接队列(ACCEPT队列),在服务端收到第三次握手后,会将半连接队列的sock取出,放到全连接队列中。队列里的sock都处于 ESTABLISHED状态。这里面的连接,就等着服务端执行accept()后被取出了。

虽然都叫队列,但其实全连接队列(icsk_accept_queue)是个链表,而半连接队列(syn_table)是个哈希表

看到这里,文章开头的问题就有了答案,建立连接的过程中根本不需要accept()参与, 执行accept()只是为了从全连接队列里取出一条连接。

为什么半连接队列要设计成哈希表?

先对比下全连接队列,他本质是个链表,因为也是线性结构,说它是个队列也没毛病。它里面放的都是已经建立完成的连接,这些连接正等待被取走。而服务端取走连接的过程中,并不关心具体是哪个连接,只要是个连接就行,所以直接从队列头取就行了。这个过程算法复杂度为O(1)

半连接队列却不太一样,因为队列里的都是不完整的连接,嗷嗷等待着第三次握手的到来。那么现在有一个第三次握手来了,则需要从队列里把相应IP端口的连接取出,如果半连接队列还是个链表,那我们就需要依次遍历,才能拿到我们想要的那个连接,算法复杂度就是O(n)。

而如果将半连接队列设计成哈希表,那么查找半连接的算法复杂度就回到O(1)了。

因此出于效率考虑,全连接队列被设计成链表,而半连接队列被设计为哈希表。

全连接队列满了会怎么样?

如果队列满了,服务端还收到客户端的第三次握手ACK,默认当然会丢弃这个ACK。

但除了丢弃之外,还有一些附带行为,这会受 tcp_abort_on_overflow 参数的影响。

# cat /proc/sys/net/ipv4/tcp_abort_on_overflow
0
  • tcp_abort_on_overflow设置为 0,全连接队列满了之后,会丢弃这个第三次握手ACK包,并且开启定时器,重传第二次握手的SYN+ACK,如果重传超过一定限制次数,还会把对应的半连接队列里的连接给删掉。

tcp_abort_on_overflow为0

  • tcp_abort_on_overflow设置为 1,全连接队列满了之后,就直接发RST给客户端,效果上看就是连接断了。

这个现象是不是很熟悉,服务端端口未监听时,客户端尝试去连接,服务端也会回一个RST。这两个情况长一样,所以客户端这时候收到RST之后,其实无法区分到底是端口未监听,还是全连接队列满了

tcp_abort_on_overflow为1

半连接队列满了会怎么样?

一般是丢弃,但这个行为可以通过 tcp_syncookies 参数去控制。但比起这个,更重要的是先了解下半连接队列为什么会被打满。

首先我们需要明白,一般情况下,半连接的”生存”时间其实很短,只有在第一次和第三次握手间,如果半连接都满了,说明服务端疯狂收到第一次握手请求,如果是线上游戏应用,能有这么多请求进来,那说明你可能要富了。但现实往往比较骨感,你可能遇到了SYN Flood攻击

所谓SYN Flood攻击,可以简单理解为,攻击方模拟客户端疯狂发第一次握手请求过来,在服务端憨憨地回复第二次握手过去之后,客户端死活不发第三次握手过来,这样做,可以把服务端半连接队列打满,从而导致正常连接不能正常进来。

那这种情况怎么处理?有没有一种方法可以绕过半连接队列

有,上面提到的tcp_syncookies派上用场了。

当它被设置为1的时候,客户端发来第一次握手SYN时,服务端不会将其放入半连接队列中,而是直接生成一个cookies,这个cookies会跟着第二次握手,发回客户端。客户端在发第三次握手的时候带上这个cookies,服务端验证到它就是当初发出去的那个,就会建立连接并放入到全连接队列中。可以看出整个过程不再需要半连接队列的参与。

tcp_syncookies=1

TCP连接断开

TCP四次挥手过程是怎样的?

客户端主动关闭连接 —— TCP 四次挥手

每个方向都需要一个 FIN 和一个 ACK,因此通常被称为四次挥手

这里一点需要注意是:主动关闭连接的,才有 TIME_WAIT 状态。

粗暴关闭 vs 优雅关闭

关闭连接的函数有两种函数:

  • close 函数,同时 socket 关闭发送方向和读取方向,也就是 socket 不再有发送和接收数据的能力。如果有多进程/多线程共享同一个 socket,如果有一个进程调用了 close 关闭只是让 socket 引用计数 -1,并不会导致 socket 不可用,同时也不会发出 FIN 报文,其他进程还是可以正常读写该 socket,直到引用计数变为 0,才会发出 FIN 报文。
  • shutdown 函数,可以指定 socket 只关闭发送方向而不关闭读取方向,也就是 socket 不再有发送数据的能力,但是还是具有接收数据的能力。如果有多进程/多线程共享同一个 socket,shutdown 则不管引用计数,直接使得该 socket 不可用,然后发出 FIN 报文,如果有别的进程企图使用该 socket,将会受到影响。

如果客户端是用 close 函数来关闭连接,那么在 TCP 四次挥手过程中,如果收到了服务端发送的数据,由于客户端已经不再具有发送和接收数据的能力,所以客户端的内核会回 RST 报文给服务端,然后内核会释放连接,这时就不会经历完成的 TCP 四次挥手,所以我们常说,调用 close 是粗暴的关闭。

当服务端收到 RST 后,内核就会释放连接,当服务端应用程序再次发起读操作或者写操作时,就能感知到连接已经被释放了:

  • 如果是读操作,则会返回 RST 的报错,也就是我们常见的Connection reset by peer。
  • 如果是写操作,那么程序会产生 SIGPIPE 信号,应用层代码可以捕获并处理信号,如果不处理,则默认情况下进程会终止,异常退出。

相对的,shutdown 函数因为可以指定只关闭发送方向而不关闭读取方向,所以即使在 TCP 四次挥手过程中,如果收到了服务端发送的数据,客户端也是可以正常读取到该数据的,然后就会经历完整的 TCP 四次挥手,所以我们常说,调用 shutdown 是优雅的关闭。

为什么是四次挥手?

再来回顾下四次挥手双方发 FIN 包的过程,就能理解为什么需要四次了。

  • 关闭连接时,客户端向服务端发送 FIN 时,仅仅表示客户端不再发送数据了但是还能接收数据。
  • 服务端收到客户端的 FIN 报文时,先回一个 ACK 应答报文,而服务端可能还有数据需要处理和发送,等服务端不再发送数据时,才发送 FIN 报文给客户端来表示同意现在关闭连接。

从上面过程可知,服务端通常需要等待完成数据的发送和处理,所以服务端的 ACKFIN 一般都会分开发送,因此是需要四次挥手。

但是在特定情况下,四次挥手是可以变成三次挥手的

TCP 四次挥手,可以变成三次吗?

在用 wireshark 工具抓包的时候,我们也会常看到 TCP 挥手过程是三次,而不是四次,如下图:

在这里插入图片描述

当被动关闭方(上图的服务端)在 TCP 挥手过程中,「没有数据要发送」并且「开启了 TCP 延迟确认机制」,那么第二和第三次挥手就会合并传输,这样就出现了三次挥手。

在这里插入图片描述

然后因为 TCP 延迟确认机制是默认开启的,所以导致我们抓包时,看见三次挥手的次数比四次挥手还多。

什么是 TCP 延迟确认机制?


当发送没有携带数据的 ACK,它的网络效率也是很低的,因为它也有 40 个字节的 IP 头 和 TCP 头,但却没有携带数据报文。 为了解决 ACK 传输效率低问题,所以就衍生出了 TCP 延迟确认。 TCP 延迟确认的策略:

  • 当有响应数据要发送时,ACK 会随着响应数据一起立刻发送给对方
  • 当没有响应数据要发送时,ACK 将会延迟一段时间,以等待是否有响应数据可以一起发送
  • 如果在延迟等待发送 ACK 期间,对方的第二个数据报文又到达了,这时就会立刻发送 ACK

img

  • 最大延迟确认时间是 200 ms (1000/5)
  • 最短延迟确认时间是 40 ms (1000/25)

为什么 TIME_WAIT 等待的时间是 2MSL?

MSL 是 Maximum Segment Lifetime,报文最大生存时间,它是任何报文在网络上存在的最长时间,超过这个时间报文将被丢弃。因为 TCP 报文基于是 IP 协议的,而 IP 头中有一个 TTL 字段,是 IP 数据报可以经过的最大路由数,每经过一个处理他的路由器此值就减 1,当此值为 0 则数据报将被丢弃,同时发送 ICMP 报文通知源主机。

MSL 与 TTL 的区别: MSL 的单位是时间,而 TTL 是经过路由跳数。所以 MSL 应该要大于等于 TTL 消耗为 0 的时间,以确保报文已被自然消亡。

TTL 的值一般是 64,Linux 将 MSL 设置为 30 秒,意味着 Linux 认为数据报文经过 64 个路由器的时间不会超过 30 秒,如果超过了,就认为报文已经消失在网络中了

TIME_WAIT 等待 2 倍的 MSL,比较合理的解释是: 网络中可能存在来自发送方的数据包,当这些发送方的数据包被接收方处理后又会向对方发送响应,所以一来一回需要等待 2 倍的时间

比如,如果被动关闭方没有收到断开连接的最后的 ACK 报文,就会触发超时重发 FIN 报文,另一方接收到 FIN 后,会重发 ACK 给被动关闭方, 一来一去正好 2 个 MSL。

可以看到 2MSL时长 这其实是相当于至少允许报文丢失一次。比如,若 ACK 在一个 MSL 内丢失,这样被动方重发的 FIN 会在第 2 个 MSL 内到达,TIME_WAIT 状态的连接可以应对。

为什么不是 4 或者 8 MSL 的时长呢?你可以想象一个丢包率达到百分之一的糟糕网络,连续两次丢包的概率只有万分之一,这个概率实在是太小了,忽略它比解决它更具性价比。

2MSL 的时间是从客户端接收到 FIN 后发送 ACK 开始计时的。如果在 TIME-WAIT 时间内,因为客户端的 ACK 没有传输到服务端,客户端又接收到了服务端重发的 FIN 报文,那么 2MSL 时间将重新计时

在 Linux 系统里 2MSL 默认是 60 秒,那么一个 MSL 也就是 30 秒。Linux 系统停留在 TIME_WAIT 的时间为固定的 60 秒

为什么需要 TIME_WAIT 状态?

主动发起关闭连接的一方,才会有 TIME-WAIT 状态。

需要 TIME-WAIT 状态,主要是两个原因:

  • 防止历史连接中的数据,被后面相同四元组的连接错误的接收;
  • 保证「被动关闭连接」的一方,能被正确的关闭;

原因一:防止历史连接中的数据,被后面相同四元组的连接错误的接收

为了能更好的理解这个原因,我们先来了解序列号(SEQ)和初始序列号(ISN)。

  • 序列号,是 TCP 一个头部字段,标识了 TCP 发送端到 TCP 接收端的数据流的一个字节,因为 TCP 是面向字节流的可靠协议,为了保证消息的顺序性和可靠性,TCP 为每个传输方向上的每个字节都赋予了一个编号,以便于传输成功后确认、丢失后重传以及在接收端保证不会乱序。序列号是一个 32 位的无符号数,因此在到达 4G 之后再循环回到 0
  • 初始序列号,在 TCP 建立连接的时候,客户端和服务端都会各自生成一个初始序列号,它是基于时钟生成的一个随机数,来保证每个连接都拥有不同的初始序列号。初始化序列号可被视为一个 32 位的计数器,该计数器的数值每 4 微秒加 1,循环一次需要 4.55 小时

给大家抓了一个包,下图中的 Seq 就是序列号,其中红色框住的分别是客户端和服务端各自生成的初始序列号。

TCP 抓包图

通过前面我们知道,序列号和初始化序列号并不是无限递增的,会发生回绕为初始值的情况,这意味着无法根据序列号来判断新老数据

假设 TIME-WAIT 没有等待时间或时间过短,被延迟的数据包抵达后会发生什么呢?

TIME-WAIT 时间过短,收到旧连接的数据报文

如上图:

  • 服务端在关闭连接之前发送的 SEQ = 301 报文,被网络延迟了。
  • 接着,服务端以相同的四元组重新打开了新连接,前面被延迟的 SEQ = 301 这时抵达了客户端,而且该数据报文的序列号刚好在客户端接收窗口内,因此客户端会正常接收这个数据报文,但是这个数据报文是上一个连接残留下来的,这样就产生数据错乱等严重的问题。

为了防止历史连接中的数据,被后面相同四元组的连接错误的接收,因此 TCP 设计了 TIME_WAIT 状态,状态会持续 2MSL 时长,这个时间足以让两个方向上的数据包都被丢弃,使得原来连接的数据包在网络中都自然消失,再出现的数据包一定都是新建立连接所产生的。

原因二:保证「被动关闭连接」的一方,能被正确的关闭

TIME-WAIT 作用是等待足够的时间以确保最后的 ACK 能让被动关闭方接收,从而帮助其正常关闭。

如果客户端(主动关闭方)最后一次 ACK 报文(第四次挥手)在网络中丢失了,那么按照 TCP 可靠性原则,服务端(被动关闭方)会重发 FIN 报文。

假设客户端没有 TIME_WAIT 状态,而是在发完最后一次回 ACK 报文就直接进入 CLOSE 状态,如果该 ACK 报文丢失了,服务端则重传的 FIN 报文,而这时客户端已经进入到关闭状态了,在收到服务端重传的 FIN 报文后,就会回 RST 报文。

TIME-WAIT 时间过短,没有确保连接正常关闭

服务端收到这个 RST 并将其解释为一个错误(Connection reset by peer),这对于一个可靠的协议来说不是一个优雅的终止方式。

为了防止这种情况出现,客户端必须等待足够长的时间,确保服务端能够收到 ACK,如果服务端没有收到 ACK,那么就会触发 TCP 重传机制,服务端会重新发送一个 FIN,这样一去一来刚好两个 MSL 的时间。

TIME-WAIT 时间正常,确保了连接正常关闭

客户端在收到服务端重传的 FIN 报文时,TIME_WAIT 状态的等待时间,会重置回 2MSL。

服务器出现大量 TIME_WAIT 状态的原因有哪些?

如果服务器出现大量的 TIME_WAIT 状态的 TCP 连接,就是说明服务器主动断开了很多 TCP 连接。

问题来了,什么场景下服务端会主动断开连接呢?

  • 第一个场景:HTTP 没有使用长连接
  • 第二个场景:HTTP 长连接超时
  • 第三个场景:HTTP 长连接的请求数量达到上限

第一个场景:HTTP 没有使用长连接

从 HTTP/1.1 开始, 就默认是开启了 Keep-Alive,现在大多数浏览器都默认是使用 HTTP/1.1,所以 Keep-Alive 都是默认打开的。一旦客户端和服务端达成协议,那么长连接就建立好了。

如果要关闭 HTTP Keep-Alive,需要在 HTTP 请求或者响应的 header 里添加 Connection:close 信息,也就是说,只要客户端和服务端任意一方的 HTTP header 中有 Connection:close 信息,那么就无法使用 HTTP 长连接的机制。这样在完成一次 HTTP 请求/处理后,就会关闭连接。

问题来了,这时候是客户端还是服务端主动关闭连接呢?

在 RFC 文档中,并没有明确由谁来关闭连接,请求和响应的双方都可以主动关闭 TCP 连接。

不过,根据大多数 Web 服务的实现,不管哪一方禁用了 HTTP Keep-Alive,都是由服务端主动关闭连接,那么此时服务端上就会出现 TIME_WAIT 状态的连接。

针对这个场景下,解决的方式也很简单,让客户端和服务端都开启 HTTP Keep-Alive 机制。

第二个场景:HTTP 长连接超时

假设设置了 HTTP 长连接的超时时间是 60 秒,nginx 就会启动一个「定时器」,如果客户端在完后一个 HTTP 请求后,在 60 秒内都没有再发起新的请求,定时器的时间一到,nginx 就会触发回调函数来关闭该连接,那么此时服务端上就会出现 TIME_WAIT 状态的连接

HTTP 长连接超时

当服务端出现大量 TIME_WAIT 状态的连接时,如果现象是有大量的客户端建立完 TCP 连接后,很长一段时间没有发送数据,那么大概率就是因为 HTTP 长连接超时,导致服务端主动关闭连接,产生大量处于 TIME_WAIT 状态的连接。

可以往网络问题的方向排查,比如是否是因为网络问题,导致客户端发送的数据一直没有被服务端接收到,以至于 HTTP 长连接超时。

第三个场景:HTTP 长连接的请求数量达到上限

Web 服务端通常会有个参数,来定义一条 HTTP 长连接上最大能处理的请求数量,当超过最大限制时,就会主动关闭连接。

比如 nginx 的 keepalive_requests 这个参数,这个参数是指一个 HTTP 长连接建立之后,nginx 就会为这个连接设置一个计数器,记录这个 HTTP 长连接上已经接收并处理的客户端请求的数量。如果达到这个参数设置的最大值时,则 nginx 会主动关闭这个长连接,那么此时服务端上就会出现 TIME_WAIT 状态的连接。

keepalive_requests 参数的默认值是 100 ,意味着每个 HTTP 长连接最多只能跑 100 次请求,这个参数往往被大多数人忽略,因为当 QPS (每秒请求数) 不是很高时,默认值 100 凑合够用。

但是,对于一些 QPS 比较高的场景,比如超过 10000 QPS,甚至达到 30000 , 50000 甚至更高,如果 keepalive_requests 参数值是 100,这时候就 nginx 就会很频繁地关闭连接,那么此时服务端上就会出大量的 TIME_WAIT 状态

针对这个场景下,解决的方式也很简单,调大 nginx 的 keepalive_requests 参数就行。

服务器出现大量 CLOSE_WAIT 状态的原因有哪些?

CLOSE_WAIT 状态是「被动关闭方」才会有的状态,而且如果「被动关闭方」没有调用 close 函数关闭连接,那么就无法发出 FIN 报文,从而无法使得 CLOSE_WAIT 状态的连接转变为 LAST_ACK 状态。

所以,当服务端出现大量 CLOSE_WAIT 状态的连接的时候,说明服务端的程序没有调用 close 函数关闭连接

那什么情况会导致服务端的程序没有调用 close 函数关闭连接?这时候通常需要排查代码。

我们先来分析一个普通的 TCP 服务端的流程:

  1. 创建服务端 socket,bind 绑定端口、listen 监听端口
  2. 将服务端 socket 注册到 epoll
  3. epoll_wait 等待连接到来,连接到来时,调用 accpet 获取已连接的 socket
  4. 将已连接的 socket 注册到 epoll
  5. epoll_wait 等待事件发生
  6. 对方连接关闭时,我方调用 close

可能导致服务端没有调用 close 函数的原因,如下。

第一个原因:第 2 步没有做,没有将服务端 socket 注册到 epoll,这样有新连接到来时,服务端没办法感知这个事件,也就无法获取到已连接的 socket,那服务端自然就没机会对 socket 调用 close 函数了。

不过这种原因发生的概率比较小,这种属于明显的代码逻辑 bug,在前期 read view 阶段就能发现的了。

第二个原因: 第 3 步没有做,有新连接到来时没有调用 accpet 获取该连接的 socket,导致当有大量的客户端主动断开了连接,而服务端没机会对这些 socket 调用 close 函数,从而导致服务端出现大量 CLOSE_WAIT 状态的连接。

发生这种情况可能是因为服务端在执行 accpet 函数之前,代码卡在某一个逻辑或者提前抛出了异常。

第三个原因:第 4 步没有做,通过 accpet 获取已连接的 socket 后,没有将其注册到 epoll,导致后续收到 FIN 报文的时候,服务端没办法感知这个事件,那服务端就没机会调用 close 函数了。

发生这种情况可能是因为服务端在将已连接的 socket 注册到 epoll 之前,代码卡在某一个逻辑或者提前抛出了异常。之前看到过别人解决 close_wait 问题的实践文章,感兴趣的可以看看:一次 Netty 代码不健壮导致的大量 CLOSE_WAIT 连接原因分析(opens new window)

第四个原因:第 6 步没有做,当发现客户端关闭连接后,服务端没有执行 close 函数,可能是因为代码漏处理,或者是在执行 close 函数之前,代码卡在某一个逻辑,比如发生死锁等等。

可以发现,当服务端出现大量 CLOSE_WAIT 状态的连接的时候,通常都是代码的问题,这时候我们需要针对具体的代码一步一步的进行排查和定位,主要分析的方向就是服务端为什么没有调用 close

四次挥手中收到乱序的 FIN 包会如何处理?

img

在 FIN_WAIT_2 状态下,是如何处理收到的乱序到 FIN 报文,然后 TCP 连接又是什么时候才进入到 TIME_WAIT 状态?

结论:

在 FIN_WAIT_2 状态时,如果收到乱序的 FIN 报文,那么就被会加入到「乱序队列」,并不会进入到 TIME_WAIT 状态。

等再次收到前面被网络延迟的数据包时,会判断乱序队列有没有数据,然后会检测乱序队列中是否有可用的数据,如果能在乱序队列中找到与当前报文的序列号保持的顺序的报文,就会看该报文是否有 FIN 标志,如果发现有 FIN 标志,这时才会进入 TIME_WAIT 状态。

img

在 TIME_WAIT 状态的 TCP 连接,收到 SYN 后会发生什么?

图片

针对这个问题,关键是要看 SYN 的「序列号和时间戳」是否合法

  • 合法 SYN:客户端的 SYN 的「序列号」比服务端「期望下一个收到的序列号」要并且 SYN 的「时间戳」比服务端「最后收到的报文的时间戳」要
  • 非法 SYN:客户端的 SYN 的「序列号」比服务端「期望下一个收到的序列号」要或者 SYN 的「时间戳」比服务端「最后收到的报文的时间戳」要

如果双方都没有开启 TCP 时间戳机制,则只比较序列号。

收到合法 SYN

如果处于 TIME_WAIT 状态的连接收到「合法的 SYN 」后,就会重用此四元组连接,跳过 2MSL 而转变为 SYN_RECV 状态,接着就能进行建立连接过程

用下图作为例子,双方都启用了 TCP 时间戳机制,TSval 是发送报文时的时间戳:

图片

收到非法 SYN

如果处于 TIME_WAIT 状态的连接收到「非法的 SYN 」后,就会再回复一个第四次挥手的 ACK 报文,客户端收到后,发现并不是自己期望收到确认号(ack num),就回 RST 报文给服务端

收到 RST

处于 TIME_WAIT 状态的连接,收到 RST 会断开连接吗?

会不会断开,关键看 net.ipv4.tcp_rfc1337 这个内核参数(默认情况是为 0):

  • 如果这个参数设置为 0, 收到 RST 报文会提前结束 TIME_WAIT 状态,释放连接。
  • 如果这个参数设置为 1, 就会丢掉 RST 报文。

如果已经建立了连接,但是客户端突然出现故障了怎么办?

为了避免这种情况,TCP 搞了个保活机制。这个机制的原理是这样的:

定义一个时间段,在这个时间段内,如果没有任何连接相关的活动,TCP 保活机制会开始作用,每隔一个时间间隔,发送一个探测报文,该探测报文包含的数据非常少,如果连续几个探测报文都没有得到响应,则认为当前的 TCP 连接已经死亡,系统内核将错误信息通知给上层应用程序。

如果开启了 TCP 保活,需要考虑以下几种情况:

  • 第一种,对端程序是正常工作的。当 TCP 保活的探测报文发送给对端, 对端会正常响应,这样 TCP 保活时间会被重置,等待下一个 TCP 保活时间的到来。
  • 第二种,对端主机宕机并重启。当 TCP 保活的探测报文发送给对端后,对端是可以响应的,但由于没有该连接的有效信息,会产生一个 RST 报文,这样很快就会发现 TCP 连接已经被重置。
  • 第三种,是对端主机宕机(注意不是进程崩溃,进程崩溃后操作系统在回收进程资源的时候,会发送 FIN 报文,而主机宕机则是无法感知的,所以需要 TCP 保活机制来探测对方是不是发生了主机宕机),或对端由于其他原因导致报文不可达。当 TCP 保活的探测报文发送给对端后,石沉大海,没有响应,连续几次,达到保活探测次数后,TCP 会报告该 TCP 连接已经死亡

如果已经建立了连接,但是服务端的进程崩溃会发生什么?

TCP 的连接信息是由内核维护的,所以当服务端的进程崩溃后,内核需要回收该进程的所有 TCP 连接资源,于是内核会发送第一次挥手 FIN 报文,后续的挥手过程也都是在内核完成,并不需要进程的参与,所以即使服务端的进程退出了,还是能与客户端完成 TCP 四次挥手的过程。

如果没有开启保活&没有数据交互,一端进程崩溃和断电有什么区别?

这个问题有几个关键词:

  • 没有开启 keepalive;
  • 一直没有数据交互;
  • 进程崩溃;
  • 主机崩溃;

主机崩溃

客户端主机崩溃了,服务端是无法感知到的,在加上服务端没有开启 TCP keepalive,又没有数据交互的情况下,服务端的 TCP 连接将会一直处于 ESTABLISHED 连接状态,直到服务端重启进程。

所以,我们可以得知一个点,在没有使用 TCP 保活机制且双方不传输数据的情况下,一方的 TCP 连接处在 ESTABLISHED 状态,并不代表另一方的连接还一定正常。

进程崩溃

TCP 的连接信息是由内核维护的,所以当服务端的进程崩溃后,内核需要回收该进程的所有 TCP 连接资源,于是内核会发送第一次挥手 FIN 报文,后续的挥手过程也都是在内核完成,并不需要进程的参与,所以即使服务端的进程退出了,还是能与客户端完成 TCP四次挥手的过程。

所以,即使没有开启 TCP keepalive,且双方也没有数据交互的情况下,如果其中一方的进程发生了崩溃,这个过程操作系统是可以感知的到的,于是就会发送 FIN 报文给对方,然后与对方进行 TCP 四次挥手。

拔掉网线后, 原本的 TCP 连接还存在吗?

拔掉网线几秒,再插回去,原本的 TCP 连接还存在吗?

实际上,TCP 连接在 Linux 内核中是一个名为 struct socket 的结构体,该结构体的内容包含 TCP 连接的状态等信息。当拔掉网线的时候,操作系统并不会变更该结构体的任何内容,所以 TCP 连接的状态也不会发生改变。

我在我的电脑上做了个小实验,我用 ssh 终端连接了我的云服务器,然后我通过断开 wifi 的方式来模拟拔掉网线的场景,此时查看 TCP 连接的状态没有发生变化,还是处于 ESTABLISHED 状态。

图片

通过上面这个实验结果,我们知道了,拔掉网线这个动作并不会影响 TCP 连接的状态。

接下来,要看拔掉网线后,双方做了什么动作。

所以, 针对这个问题,要分场景来讨论:

  • 拔掉网线后,有数据传输;
  • 拔掉网线后,没有数据传输;

拔掉网线后,有数据传输

在客户端拔掉网线后,服务端向客户端发送的数据报文会得不到任何的响应,在等待一定时长后,服务端就会触发超时重传机制,重传未得到响应的数据报文。

如果在服务端重传报文的过程中,客户端刚好把网线插回去了,由于拔掉网线并不会改变客户端的 TCP 连接状态,并且还是处于 ESTABLISHED 状态,所以这时客户端是可以正常接收服务端发来的数据报文的,然后客户端就会回 ACK 响应报文。

此时,客户端和服务端的 TCP 连接依然存在的,就感觉什么事情都没有发生。

但是,如果如果在服务端重传报文的过程中,客户端一直没有将网线插回去,服务端超时重传报文的次数达到一定阈值后,内核就会判定出该 TCP 有问题,然后通过 Socket 接口告诉应用程序该 TCP 连接出问题了,于是服务端的 TCP 连接就会断开。

而等客户端插回网线后,如果客户端向服务端发送了数据,由于服务端已经没有与客户端相同四元祖的 TCP 连接了,因此服务端内核就会回复 RST 报文,客户端收到后就会释放该 TCP 连接。

此时,客户端和服务端的 TCP 连接都已经断开了。

拔掉网线后,没有数据传输

针对拔掉网线后,没有数据传输的场景,还得看是否开启了 TCP keepalive 机制 (TCP 保活机制)。

参考链接

4.1 TCP 三次握手与四次挥手面试题 | 小林coding (xiaolincoding.com)

4.8 SYN 报文什么时候情况下会被丢弃? | 小林coding (xiaolincoding.com)

4.9 已建立连接的TCP,收到SYN会发生什么? | 小林coding (xiaolincoding.com)

4.10 四次挥手中收到乱序的 FIN 包会如何处理? | 小林coding (xiaolincoding.com)

4.11 在 TIME_WAIT 状态的 TCP 连接,收到 SYN 后会发生什么? | 小林coding (xiaolincoding.com)

4.12 TCP 连接,一端断电和进程崩溃有什么区别? | 小林coding (xiaolincoding.com)

4.13 拔掉网线后, 原本的 TCP 连接还存在吗? | 小林coding (xiaolincoding.com)

4.22 TCP 四次挥手,可以变成三次吗? | 小林coding (xiaolincoding.com)

4.19 服务端没有 listen,客户端发起连接建立,会发生什么? | 小林coding (xiaolincoding.com)