敏感词过滤方案总结
敏感词过滤用的使用比较多的 Trie 树算法 和 DFA 算法。
算法实现
Trie 树
Trie 树 也称为字典树、单词查找树,哈希树的一种变种,通常被用于字符串匹配,用来解决在一组字符串集合中快速查找某个字符串的问题。像浏览器搜索的关键词提示就可以基于 Trie 树来做的。
假如我们的敏感词库中有以下敏感词:
- 高清视频
- 高清 CV
- 东京冷
- 东京热
我们构造出来的敏感词 Trie 树就是下面这样的:
当我们要查找对应的字符串“东京热”的话,我们会把这个字符串切割成单个的字符“东”、“京”、“热”,然后我们从 Trie 树的根节点开始匹配。
可以看出, Trie 树的核心原理其实很简单,就是通过公共前缀来提高字符串匹配效率。
Trie 树是一种利用空间换时间的数据结构,占用的内存会比较大。也正是因为这个原因,实际工程项目中都是使用的改进版 Trie 树例如双数组 Trie 树(Double-Array Trie,DAT)。
DAT 的设计者是日本的 Aoe Jun-ichi,Mori Akira 和 Sato Takuya,他们在 1989 年发表了一篇论文《An Efficient Implementation of Trie Structures》,详细介绍了 DAT 的构造和应用,原作者写的示例代码地址:https://github.com/komiya-atsushi/darts-java/blob/e2986a55e648296cc0a6244ae4a2e457cd89fb82/src/main/java/darts/DoubleArrayTrie.java。相比较于 Trie 树,DAT 的内存占用极低,可以达到 Trie 树内存的 1%左右。DAT 在中文分词、自然语言处理、信息检索等领域有广泛的应用,是一种非常优秀的数据结构。
AC 自动机
Aho-Corasick(AC)自动机是一种建立在 Trie 树上的一种改进算法,是一种多模式匹配算法,由贝尔实验室的研究人员 Alfred V. Aho 和 Margaret J.Corasick 发明。
AC 自动机算法使用 Trie 树来存放模式串的前缀,通过失败匹配指针(失配指针)来处理匹配失败的跳转。关于 AC 自动机的详细介绍,可以查看这篇文章:地铁十分钟 | AC 自动机。
AC自动机的构建,首先需要构建Trie树,其次需要添加失配指针(fail表),最后需要模式匹配。下图是用单词her、say、she、shr、he构成的AC自动机。
匹配的核心是从目标串从头逐个开始,在ac自动机中进行匹配,匹配上的则计数,若未匹配上则跳转失配位置进行尝试匹配,直到全部匹配完成。
如果使用上面提到的 DAT 来表示 AC 自动机 ,就可以兼顾两者的优点,得到一种高效的多模式匹配算法。Github 上已经有了开源 Java 实现版本:https://github.com/hankcs/AhoCorasickDoubleArrayTrie 。
DFA
DFA(Deterministic Finite Automata)即确定有穷自动机,与之对应的是 NFA(Non-Deterministic Finite Automata,不确定有穷自动机)。
关于 DFA 的详细介绍可以看这篇文章:有穷自动机 DFA&NFA (学习笔记) - 小蜗牛的文章 - 知乎 。
Hutool 提供了 DFA 算法的实现:
WordTree wordTree = new WordTree(); |
输出:
大 |
正则表达式
其实还有公司使用的是前端正则表达式的模式来匹配敏感词
let textarea = document.querySelector("textarea"); |
开源项目
ToolGood.Words:一款高性能敏感词(非法词/脏字)检测过滤组件,附带繁体简体互换,支持全角半角互换,汉字转拼音,模糊搜索等功能。
sensitive-words-filter:敏感词过滤项目,提供 TTMP、DFA、DAT、hash bucket、Tire 算法支持过滤。可以支持文本的高亮、过滤、判词、替换的接口支持。