【Redis】集群 | 高可用
Redis 如何实现服务高可用?
假设数据都是存储在一台服务器上,那么如果出事就完犊子了,比如:
- 如果服务器发生了宕机,由于数据恢复是需要点时间,那么这个期间是无法服务新的请求的;
- 如果这台服务器的硬盘出现了故障,可能数据就都丢失了。
要避免这种单点故障,最好的办法是将数据备份到其他服务器上,让这些服务器也可以对外提供服务,这样即使有一台服务器出现了故障,其他服务器依然可以继续提供服务。
要想设计一个高可用的 Redis 服务,一定要从 Redis 的多服务节点来考虑,比如 Redis 的主从复制、哨兵模式、切片集群。
主从复制
主从复制是 Redis 高可用服务的最基础的保证,实现方案就是将从前的一台 Redis 服务器,同步数据到多台从 Redis 服务器上,即一主多从的模式,且主从服务器之间采用的是「读写分离」的方式。
主服务器可以进行读写操作,当发生写操作时自动将写操作同步给从服务器,而从服务器一般是只读,并接受主服务器同步过来写操作命令,然后执行这条命令。
也就是说,所有的数据修改只在主服务器上进行,然后将最新的数据同步给从服务器,这样就使得主从服务器的数据是一致的。
注意,主从服务器之间的命令复制是异步进行的。
具体来说,在主从服务器命令传播阶段,主服务器收到新的写命令后,会发送给从服务器。但是,主服务器并不会等到从服务器实际执行完命令后,再把结果返回给客户端,而是主服务器自己在本地执行完命令后,就会向客户端返回结果了。如果从服务器还没有执行主服务器同步过来的命令,主从服务器间的数据就不一致了。
所以,无法实现强一致性保证(主从数据时时刻刻保持一致),数据不一致是难以避免的。
第一次同步
多台服务器之间要通过什么方式来确定谁是主服务器,或者谁是从服务器呢?
我们可以使用 replicaof
(Redis 5.0 之前使用 slaveof)命令形成主服务器和从服务器的关系。
比如,现在有服务器 A 和 服务器 B,我们在服务器 B 上执行下面这条命令:
# 服务器 B 执行这条命令 |
接着,服务器 B 就会变成服务器 A 的「从服务器」,然后与主服务器进行第一次同步。
主从服务器间的第一次同步的过程可分为三个阶段:
- 第一阶段是建立链接、协商同步;
- 第二阶段是主服务器同步数据给从服务器;
- 第三阶段是主服务器发送新写操作命令给从服务器。
第二阶段:主服务器同步数据给从服务器
这里有一点要注意,主服务器生成 RDB 这个过程是不会阻塞主线程的,因为 bgsave 命令是产生了一个子进程来做生成 RDB 文件的工作,是异步工作的,这样 Redis 依然可以正常处理命令。
但是,这期间的写操作命令并没有记录到刚刚生成的 RDB 文件中,这时主从服务器间的数据就不一致了。
那么为了保证主从服务器的数据一致性,主服务器在下面这三个时间间隙中将收到的写操作命令,写入到 replication buffer 缓冲区里:
- 主服务器生成 RDB 文件期间;
- 主服务器发送 RDB 文件给从服务器期间;
- 「从服务器」加载 RDB 文件期间;
第三阶段:主服务器发送新写操作命令给从服务器
在主服务器生成的 RDB 文件发送完,从服务器收到 RDB 文件后,丢弃所有旧数据,将 RDB 数据载入到内存。完成 RDB 的载入后,会回复一个确认消息给主服务器。
接着,主服务器将 replication buffer 缓冲区里所记录的写操作命令发送给从服务器,从服务器执行来自主服务器 replication buffer 缓冲区里发来的命令,这时主从服务器的数据就一致了。
至此,主从服务器的第一次同步的工作就完成了。
命令传播
主从服务器在完成第一次同步后,双方之间就会维护一个 TCP 连接。
后续主服务器可以通过这个连接继续将写操作命令传播给从服务器,然后从服务器执行该命令,使得与主服务器的数据库状态相同。
而且这个连接是长连接的,目的是避免频繁的 TCP 连接和断开带来的性能开销。
上面的这个过程被称为基于长连接的命令传播,通过这种方式来保证第一次同步后的主从服务器的数据一致性。
分摊主服务器的压力
在前面的分析中,我们可以知道主从服务器在第一次数据同步的过程中,主服务器会做两件耗时的操作:生成 RDB 文件和传输 RDB 文件。
主服务器是可以有多个从服务器的,如果从服务器数量非常多,而且都与主服务器进行全量同步的话,就会带来两个问题:
- 由于是通过 bgsave 命令来生成 RDB 文件的,那么主服务器就会忙于使用 fork() 创建子进程,如果主服务器的内存数据非大,在执行 fork() 函数时是会阻塞主线程的,从而使得 Redis 无法正常处理请求;
- 传输 RDB 文件会占用主服务器的网络带宽,会对主服务器响应命令请求产生影响。
在 Redis 中,从服务器可以有自己的从服务器,它不仅可以接收主服务器的同步数据,自己也可以同时作为主服务器的形式将数据同步给从服务器,组织形式如下图:
通过这种方式,主服务器生成 RDB 和传输 RDB 的压力可以分摊到从服务器。
那具体怎么做到的呢?
其实很简单,我们在「从服务器」上执行下面这条命令,使其作为目标服务器的从服务器:
replicaof <目标服务器的IP> 6379 |
此时如果目标服务器本身也是「从服务器」,那么该目标服务器不仅可以接受主服务器同步的数据,也会把数据同步给自己旗下的从服务器,从而减轻主服务器的负担。
增量复制
如果主从服务器间的网络连接断开了,那么就无法进行命令传播了,这时从服务器的数据就没办法和主服务器保持一致了,客户端就可能从「从服务器」读到旧的数据。
那么问题来了,如果此时断开的网络,又恢复正常了,要怎么继续保证主从服务器的数据一致性呢?
从 Redis 2.8 开始,网络断开又恢复后,从主从服务器会采用增量复制的方式继续同步,也就是只会把网络断开期间主服务器接收到的写操作命令,同步给从服务器。
网络恢复后的增量复制过程如下图:
主要有三个步骤:
- 从服务器在恢复网络后,会发送 psync 命令给主服务器,此时的 psync 命令里的 offset 参数不是 -1;
- 主服务器收到该命令后,然后用 CONTINUE 响应命令告诉从服务器接下来采用增量复制的方式同步数据;
- 然后主服务将主从服务器断线期间,所执行的写命令发送给从服务器,然后从服务器执行这些命令。
那么关键的问题来了,主服务器怎么知道要将哪些增量数据发送给从服务器呢?
答案藏在这两个东西里:
- repl_backlog_buffer,是一个「环形」缓冲区,用于主从服务器断连后,从中找到差异的数据;
- replication offset,标记上面那个缓冲区的同步进度,主从服务器都有各自的偏移量,主服务器使用 master_repl_offset 来记录自己「写」到的位置,从服务器使用 slave_repl_offset 来记录自己「读」到的位置。
网络断开后,当从服务器重新连上主服务器时,从服务器会通过 psync 命令将自己的复制偏移量 slave_repl_offset 发送给主服务器,主服务器根据自己的 master_repl_offset 和 slave_repl_offset 之间的差距,然后来决定对从服务器执行哪种同步操作:
- 如果判断出从服务器要读取的数据还在 repl_backlog_buffer 缓冲区里,那么主服务器将采用增量同步的方式;
- 相反,如果判断出从服务器要读取的数据已经不存在 repl_backlog_buffer 缓冲区里,那么主服务器将采用全量同步的方式。
那么在网络恢复时,如果从服务器想读的数据已经被覆盖了,主服务器就会采用全量同步,这个方式比增量同步的性能损耗要大很多。
因此,为了避免在网络恢复时,主服务器频繁地使用全量同步的方式,我们应该调整下 repl_backlog_buffer 缓冲区大小,尽可能的大一些,减少出现从服务器要读取的数据被覆盖的概率,从而使得主服务器采用增量同步的方式。
那 repl_backlog_buffer 缓冲区具体要调整到多大呢?
repl_backlog_buffer 最小的大小可以根据这面这个公式估算。
我来解释下这个公式的意思:
- second 为从服务器断线后重新连接上主服务器所需的平均时间(以秒计算)。
- write_size_per_second 则是主服务器平均每秒产生的写命令数据量大小。
举个例子,如果主服务器平均每秒产生 1 MB 的写命令,而从服务器断线之后平均要 5 秒才能重新连接主服务器。
那么 repl_backlog_buffer 大小就不能低于 5 MB,否则新写地命令就会覆盖旧数据了。
当然,为了应对一些突发的情况,可以将 repl_backlog_buffer 的大小设置为此基础上的 2 倍,也就是 10 MB。
面试题
怎么判断 Redis 某个节点是否正常工作?
Redis 判断节点是否正常工作,基本都是通过互相的 ping-pong 心态检测机制,如果有一半以上的节点去 ping 一个节点的时候没有 pong 回应,集群就会认为这个节点挂掉了,会断开与这个节点的连接。
Redis 主从节点发送的心态间隔是不一样的,而且作用也有一点区别:
- Redis 主节点默认每隔 10 秒对从节点发送 ping 命令,判断从节点的存活性和连接状态,可通过参数repl-ping-slave-period控制发送频率。
- Redis 从节点每隔 1 秒发送 replconf ack{offset} 命令,给主节点上报自身当前的复制偏移量,目的是为了:
- 实时监测主从节点网络状态;
- 上报自身复制偏移量, 检查复制数据是否丢失, 如果从节点数据丢失, 再从主节点的复制缓冲区中拉取丢失数据。
主从复制架构中,过期key如何处理?
主节点处理了一个key或者通过淘汰算法淘汰了一个key,这个时间主节点模拟一条del命令发送给从节点,从节点收到该命令后,就进行删除key的操作。
主从复制中两个 Buffer(replication buffer 、repl backlog buffer)有什么区别?
replication buffer 、repl backlog buffer 区别如下:
- 出现的阶段不一样:
- repl backlog buffer 是在增量复制阶段出现,一个主节点只分配一个 repl backlog buffer;
- replication buffer 是在全量复制阶段和增量复制阶段都会出现,主节点会给每个新连接的从节点,分配一个 replication buffer;
- 这两个 Buffer 都有大小限制的,当缓冲区满了之后,发生的事情不一样:
- 当 repl backlog buffer 满了,因为是环形结构,会直接覆盖起始位置数据;
- 当 replication buffer 满了,会导致连接断开,删除缓存,从节点重新连接,重新开始全量复制。
如何应对主从数据不一致?
第一种方法,尽量保证主从节点间的网络连接状况良好,避免主从节点在不同的机房。
第二种方法,可以开发一个外部程序来监控主从节点间的复制进度。具体做法:
- Redis 的 INFO replication 命令可以查看主节点接收写命令的进度信息(master_repl_offset)和从节点复制写命令的进度信息(slave_repl_offset),所以,我们就可以开发一个监控程序,先用 INFO replication 命令查到主、从节点的进度,然后,我们用 master_repl_offset 减去 slave_repl_offset,这样就能得到从节点和主节点间的复制进度差值了。
- 如果某个从节点的进度差值大于我们预设的阈值,我们可以让客户端不再和这个从节点连接进行数据读取,这样就可以减少读到不一致数据的情况。不过,为了避免出现客户端和所有从节点都不能连接的情况,我们需要把复制进度差值的阈值设置得大一些。
主从切换如何减少数据丢失?
主从切换过程中,产生数据丢失的情况有两种:
- 异步复制同步丢失:对于 Redis 主节点与从节点之间的数据复制,是异步复制的,当客户端发送写请求给主节点的时候,客户端会返回 ok,接着主节点将写请求异步同步给各个从节点,但是如果此时主节点还没来得及同步给从节点时发生了断电,那么主节点内存中的数据会丢失。
- 集群产生脑裂数据丢失:由于网络问题,集群节点之间失去联系。主从数据不同步;重新平衡选举,产生两个主服务。等网络恢复,旧主节点会降级为从节点,再与新主节点进行同步复制的时候,由于会从节点会清空自己的缓冲区,所以导致之前客户端写入的数据丢失了。
我们不可能保证数据完全不丢失,只能做到使得尽量少的数据丢失。
减少异步复制的数据丢失的方案
Redis 配置里有一个参数 min-slaves-max-lag,表示一旦所有的从节点数据复制和同步的延迟都超过了 min-slaves-max-lag 定义的值,那么主节点就会拒绝接收任何请求。
假设将 min-slaves-max-lag 配置为 10s 后,根据目前 master->slave 的复制速度,如果数据同步完成所需要时间超过10s,就会认为 master 未来宕机后损失的数据会很多,master 就拒绝写入新请求。这样就能将 master 和 slave 数据差控制在10s内,即使 master 宕机也只是这未复制的 10s 数据。
那么对于客户端,当客户端发现 master 不可写后,我们可以采取降级措施,将数据暂时写入本地缓存和磁盘中,在一段时间(等 master 恢复正常)后重新写入 master 来保证数据不丢失,也可以将数据写入 kafka 消息队列,等 master 恢复正常,再隔一段时间去消费 kafka 中的数据,让将数据重新写入 master 。
减少脑裂的数据丢失的方案
当主节点发现「从节点下线的数量太多」,或者「网络延迟太大」的时候,那么主节点会禁止写操作,直接把错误返回给客户端。
在 Redis 的配置文件中有两个参数我们可以设置:
- min-slaves-to-write x,主节点必须要有至少 x 个从节点连接,如果小于这个数,主节点会禁止写数据。
- min-slaves-max-lag x,主从数据复制和同步的延迟不能超过 x 秒,如果主从同步的延迟超过 x 秒,主节点会禁止写数据。
我们可以把 min-slaves-to-write 和 min-slaves-max-lag 这两个配置项搭配起来使用,分别给它们设置一定的阈值,假设为 N 和 T。
这两个配置项组合后的要求是,主节点连接的从节点中至少有 N 个从节点,「并且」主节点进行数据复制时的 ACK 消息延迟不能超过 T 秒,否则,主节点就不会再接收客户端的写请求了。
即使原主节点是假故障,它在假故障期间也无法响应哨兵心跳,也不能和从节点进行同步,自然也就无法和从节点进行 ACK 确认了。这样一来,min-slaves-to-write 和 min-slaves-max-lag 的组合要求就无法得到满足,原主节点就会被限制接收客户端写请求,客户端也就不能在原主节点中写入新数据了。
等到新主节点上线时,就只有新主节点能接收和处理客户端请求,此时,新写的数据会被直接写到新主节点中。而原主节点会被哨兵降为从节点,即使它的数据被清空了,也不会有新数据丢失。我再来给你举个例子。
假设我们将 min-slaves-to-write 设置为 1,把 min-slaves-max-lag 设置为 12s,把哨兵的 down-after-milliseconds 设置为 10s,主节点因为某些原因卡住了 15s,导致哨兵判断主节点客观下线,开始进行主从切换。同时,因为原主节点卡住了 15s,没有一个从节点能和原主节点在 12s 内进行数据复制,原主节点也无法接收客户端请求了。这样一来,主从切换完成后,也只有新主节点能接收请求,不会发生脑裂,也就不会发生数据丢失的问题了。
主从如何做到故障自动切换?
主节点挂了 ,从节点是无法自动升级为主节点的,这个过程需要人工处理,在此期间 Redis 无法对外提供写操作。
此时,Redis 哨兵机制就登场了,哨兵在发现主节点出现故障时,由哨兵自动完成故障发现和故障转移,并通知给应用方,从而实现高可用性。
为什么要有哨兵机制?
在 Redis 的主从架构中,由于主从模式是读写分离的,如果主节点(master)挂了,那么将没有主节点来服务客户端的写操作请求,也没有主节点给从节点(slave)进行数据同步了。
这时如果要恢复服务的话,需要人工介入,选择一个「从节点」切换为「主节点」,然后让其他从节点指向新的主节点,同时还需要通知上游那些连接 Redis 主节点的客户端,将其配置中的主节点 IP 地址更新为「新主节点」的 IP 地址。
这样也不太“智能”了,要是有一个节点能监控「主节点」的状态,当发现主节点挂了,它自动将一个「从节点」切换为「主节点」的话,那么可以节省我们很多事情啊!
Redis 在 2.8 版本以后提供的哨兵(Sentinel)机制,它的作用是实现主从节点故障转移。它会监测主节点是否存活,如果发现主节点挂了,它就会选举一个从节点切换为主节点,并且把新主节点的相关信息通知给从节点和客户端。
哨兵机制是如何工作的?
哨兵其实是一个运行在特殊模式下的 Redis 进程,所以它也是一个节点。从“哨兵”这个名字也可以看得出来,它相当于是“观察者节点”,观察的对象是主从节点。
当然,它不仅仅是观察那么简单,在它观察到有异常的状况下,会做出一些“动作”,来修复异常状态。
哨兵节点主要负责三件事情:监控、选主、通知。
如何判断主节点真的故障了?
哨兵会每隔 1 秒给所有主从节点发送 PING 命令,当主从节点收到 PING 命令后,会发送一个响应命令给哨兵,这样就可以判断它们是否在正常运行。
如果主节点或者从节点没有在规定的时间内响应哨兵的 PING 命令,哨兵就会将它们标记为「主观下线」。这个「规定的时间」是配置项 down-after-milliseconds
参数设定的,单位是毫秒。
主观下线?难道还有客观下线?
是的没错,客观下线只适用于主节点。
之所以针对「主节点」设计「主观下线」和「客观下线」两个状态,是因为有可能「主节点」其实并没有故障,可能只是因为主节点的系统压力比较大或者网络发送了拥塞,导致主节点没有在规定时间内响应哨兵的 PING 命令。
所以,为了减少误判的情况,哨兵在部署的时候不会只部署一个节点,而是用多个节点部署成哨兵集群(最少需要三台机器来部署哨兵集群),通过多个哨兵节点一起判断,就可以就可以避免单个哨兵因为自身网络状况不好,而误判主节点下线的情况。同时,多个哨兵的网络同时不稳定的概率较小,由它们一起做决策,误判率也能降低。
具体是怎么判定主节点为「客观下线」的呢?
当一个哨兵判断主节点为「主观下线」后,就会向其他哨兵发起命令,其他哨兵收到这个命令后,就会根据自身和主节点的网络状况,做出赞成投票或者拒绝投票的响应。
当这个哨兵的赞同票数达到哨兵配置文件中的 quorum 配置项设定的值后,这时主节点就会被该哨兵标记为「客观下线」。
例如,现在有 3 个哨兵,quorum 配置的是 2,那么一个哨兵需要 2 张赞成票,就可以标记主节点为“客观下线”了。这 2 张赞成票包括哨兵自己的一张赞成票和另外两个哨兵的赞成票。
quorum 的值一般设置为哨兵个数的二分之一加 1,例如 3 个哨兵就设置 2。而且哨兵节点的数量应该是奇数。
哨兵判断完主节点客观下线后,哨兵就要开始在多个「从节点」中,选出一个从节点来做新主节点。
由哪个哨兵进行主从故障转移?
前面说过,为了更加“客观”的判断主节点故障了,一般不会只由单个哨兵的检测结果来判断,而是多个哨兵一起判断,这样可以减少误判概率,所以哨兵是以哨兵集群的方式存在的。
问题来了,由哨兵集群中的哪个节点进行主从故障转移呢?
所以这时候,还需要在哨兵集群中选出一个 leader,让 leader 来执行主从切换。
选举 leader 的过程其实是一个投票的过程,在投票开始前,肯定得有个「候选者」。哪个哨兵节点判断主节点为「客观下线」,这个哨兵节点就是候选者,所谓的候选者就是想当 Leader 的哨兵。
候选者会向其他哨兵发送命令,表明希望成为 Leader 来执行主从切换,并让所有其他哨兵对它进行投票。
每个哨兵只有一次投票机会,如果用完后就不能参与投票了,可以投给自己或投给别人,但是只有候选者才能把票投给自己。
那么在投票过程中,任何一个「候选者」,要满足两个条件:
- 第一,拿到半数以上的赞成票;
- 第二,拿到的票数同时还需要大于等于哨兵配置文件中的 quorum 值。
举个例子,假设哨兵节点有 3 个,quorum 设置为 2,那么任何一个想成为 Leader 的哨兵只要拿到 2 张赞成票,就可以选举成功了。如果没有满足条件,就需要重新进行选举。
这时候有的同学就会问了,如果某个时间点,刚好有两个哨兵节点判断到主节点为客观下线,那这时不就有两个候选者了?这时该如何决定谁是 Leader 呢?
每位候选者都会先给自己投一票,然后向其他哨兵发起投票请求。如果投票者先收到「候选者 A」的投票请求,就会先投票给它,如果投票者用完投票机会后,收到「候选者 B」的投票请求后,就会拒绝投票。这时,候选者 A 先满足了上面的那两个条件,所以「候选者 A」就会被选举为 Leader。
为什么哨兵节点至少要有 3 个?
如果哨兵集群中只有 2 个哨兵节点,此时如果一个哨兵想要成功成为 Leader,必须获得 2 票(2*0.5+1=2),而不是 1 票。如果哨兵集群中有个哨兵挂掉了,那么就只剩一个哨兵了,如果这个哨兵想要成为 Leader,这时票数就没办法达到 2 票,就无法成功成为 Leader,这时是无法进行主从节点切换的。
主从故障转移的过程是怎样的?
主从故障转移操作包含以下四个步骤:
- 第一步:在已下线主节点(旧主节点)属下的所有「从节点」里面,挑选出一个从节点,并将其转换为主节点,选择的规则:
- 过滤掉已经离线的从节点;
- 过滤掉历史网络连接状态不好的从节点;
- 将剩下的从节点,进行三轮考察:优先级、复制进度、ID 号。在每一轮考察过程中,如果找到了一个胜出的从节点,就将其作为新主节点。
- 第二步:让已下线主节点属下的所有「从节点」修改复制目标,修改为复制「新主节点」;
- 第三步:将新主节点的 IP 地址和信息,通过「发布者/订阅者机制」通知给客户端;
- 第四步:继续监视旧主节点,当这个旧主节点重新上线时,将它设置为新主节点的从节点;
参考链接
Redis 常见面试题 | 小林coding (xiaolincoding.com)